Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model.

نویسندگان

  • L J Bridge
  • K A Franklin
  • M E Homer
چکیده

Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine

Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...

متن کامل

Effect of Ambient Condition on the Shower Cooling Tower in Four Type of Climates Condition

Water cooling by ambient takes place with two mechanisms of heat and mass transfer. Using packings at wet cooling towers has disadvantages such as obstruction, reduction of life expectancy and production of algae and fungi. In shower cooling towers types of towers packings are completely removed and water intake is in direct contact and heat transfer takes place in two ways of latent and sensib...

متن کامل

مدلسازی ریاضی و شبیه سازی تاثیر انتقال جرم و حرارت بر راندمان جداسازی ذرات جامد در شوینده‌های ونتوری

: In present study a mathematical model is developed in order to examine the effects of heat and mass transfer on removal efficiency of particulate matters in Venturi type scrubbers. The governing equations including the particulate concentration, gas temperature, droplets temperature, droplets diameter, and droplets velocity equations are obtained by using the conservation laws and solved nume...

متن کامل

A Double Pipe Heat Exchanger Design and Optimization for Cooling an Alkaline Fuel Cell System

In the presented research, heat transfer of a mobile electrolyte alkaline fuel cell (AFC) (which the electrolyte has cooling role of system) has been considered. Proper control volumes of system with specific qualification have been chosen. Consequently, heat and mass transfer in control volumes have been assessed. Considerations on them and contributed models lead to approve a double tube heat...

متن کامل

A Comprehensive Approach to an Optimum Design and Simulation Model of a Mechanical Draft Wet Cooling Tower

The present paper describes the designing of a thermally and economically optimum mechanical draft counter-flow wet cooling tower. The design model allows the use of a variety of packing materials in the cooling tower toward optimizing heat transfer. Once the optimum packing type is chosen, a compact cooling tower with low fan power consumption is modelled within the known design variables....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 85  شماره 

صفحات  -

تاریخ انتشار 2013